PHYSICAL REVIEW E 71, 016608(2005

Andrade, Omori, and time-to-failure laws from thermal noise in material rupture
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Using a simple mean-field rupture model with quenched disorder in the presence of thermal fluctuations
introduced by S. Cilibertet al, we provide an analytical theory of three ubiquitous empirical observations
obtained in creefconstant applied stresexperiments: the initial Andrade-like and Omori-liketIdecay of
the rate of deformation and of fiber ruptures and thét t#) critical time-to-failure behavior of acoustic
emissions just prior to the macroscopic rupture. The lifetime of the material is controlled by a thermally
activated Arrhenius nucleation process, describing the crossover between these two regimes, as shown by S.
Ciliberto et al. Thus tiny thermal fluctuations may actually play an essential role in macroscopic deformation
and rupture processes at room temperature. We also discover a reentrant dependence of the lifetime as a
function of the amount of quenched disorder.
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Rupture in random media can be viewed as a kind oflified by the presence of the frozen disorder in the rupture
critical phenomenor{1,2], with proposed applications, in thresholdsf.(i), in agreement with experiments and numeri-
particular, to fiber composites and earthquakes. This field hasal simulations. This result suggests that the usual assump-
attracted the attention of physicists due to the existence dfon of neglecting the role of thermal fluctuations in material
power laws and fractals or multifractality expressing the self-rupture processes at room temperature may actually be incor-
organization of the rupture process. Constant stigss rect(see[7] for early discussions due to frozen heteroge-
called “creep) experiments constitute a standard testing pro-neities, tiny thermal fluctuations can be amplified many
cedure in material sciences which exhibits a wealth of suclimes, thus actually controlling the time-dependent aspects of
“critical” behaviors. The typical response to the sudden apfailure.
plication of a constant stress is that the strain rate first jumps Since rupture involves a large range of scales, we follow
rapidly to high values followed by slow universal power law the modeling strategy of critical phenomefas well as ma-
decays, called the Andrade 18\8], characterizing the “pri- terial sciencegsand use a coarse-grained model describing
mary creep regime.” Then, after this long decay followed bythe mechanism of creep, damage and precursory rupture by
an approximately constant plate@econdary regimevhose  averaging over the microscopic degrees of freedom to retain
durations may vary within extraordinary large bourdse  only two ingredients(i) stress load transfer ar(d) thermal
below), the strain rate rebounds and accelerdtelsile the  activation of the rupture of a coarse-grained element. The
applied stress remains constaby following a power law corresponding democratic fiber-bundle mot@FBM) with
acceleration resulting in a finite-time singularitpe rupture  thermal noisd5,6] can be seen as a mean field treatment of
of the samplg this is the tertiary creep regime. These re-rupture. A macroscopic constant lo&dNf, is applied at
gimes of decelerating followed by accelerating rates and thgme t=0 to an initially undamaged system made of a very
lifetime of the structure are the result of a subtle interplaylarge numbem of parallel elastic fibergthe results derived
between the preexisting microheterogeneity of the materidbelow are obtained in the thermodynamic lift— ). At
and the self-organized evolving deformation and damage du@ll times, F is shared democratically among &ll —®(t) N
to dislocation motion and/or microcracking. Previous pio-surviving fibers, wher@(t) is the fraction of broken fibers at
neering models have suggested that primary and tertiarimet. The externally applied force per surviving fiber is thus
creeps are not independdH. fa=fo/[1-P(t)]. The strength of each fibéiis characterized

Here, we propose a simple mechanism that provides aby a critical valuef (i) drawn for a distributionP4(f), cen-
explanation of all these observations in a unified way. It istered on the mean equal to 1 and with variafige Putting
based on the recent propodd,6] that thermal noise is the mean strength to 1 sets the force scale. The heteroge-
strongly amplified by quenched heterogeneities. Based oOReous strengths are given characteristic of the fibers and cor-
the analysis of a simple fiber bundle rupture model, Refsrespond to a quenched disorder, which is “read” in a certain
[5,6] showed that the average lifetime of the fiber bundleorganized way as the rupture develops. Microscopic thermal
takes an Arrhenius form with an effective temperature renorfluctuations are taken into account by assuming that a fiber
malized from the bare temperatuFeio a value strongly am-  with load f, and threshold (i) > f, has a nonzero probabil-

ity G(f.(i)—f,) to rupture per unit time governed by the rate
with which a thermal fluctuation can activate a microscopic
*Electronic address: sornette@moho.ess.ucla.edu force Af;=f_(i)—f, to pass the rupture thresholgi):
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foi)—f — f _

G(f(i)-fy) = %/ erfc(%‘) , (1) L(®,2) = (1/\’2T)<1 1 0@) + pirf(2z-1) (9
where erf¢x) is the complementary error functiof,is the — and
variance of the thermal force fluctuations;, and v is a w= \ﬁ- (10)
microscopic constant rate fixing the time scale of the thermal
activation process. This expression amounts to introducing &his equation is valid as long as the approximati2nholds
zero-mean normal distribution of thermal fluctuation forces(see below The solution of Eq(8) provides in principle all
Af; with varianceT and with correlation time proportional to the information on the fractiod(t) of broken fibers.
1/+. The parameten quantifies the relative importance of the

We first follow[6] and introduce the distributio@(f,t) of  thermal fluctuations compared with the quenched heteroge-
the rupture thresholds of the unbroken fibers at ttm®b-  neities. The relevant regime for applications to macroscopic
viously, Q(f,t)=0 for f < f,, since all these fibers are already ruptures at room temperature is>1 and oftenu>1, that
broken.Q(f,t) can be approximated with a very high accu-is, thermal fluctuations are tiny contributions to the applied
racy in the limit N—o by the initial distributionPg4(f) of macroscopic mechanical forces. Indeed, assuming that the

rupture strengths truncated at a lower vafy@), energy barrier to rupture a fiber corresponds to the Griffith
energy~gc® necessary for nucleating a crack of half-length
Q(f,t) = Py(f) for f > f(t) (2 c in the solid with surface energy, we obtainu~1.5-4

X 10% for c=1 micron andu~1.5—-4 forc=1 nanometer,
usingg=10-50 erg/crhfor most solids. Thus, even for the
smallest microcracks, thermal fluctuations are very small in
s relative value.

®(1) = f_x df Py(f) 3 It turns out that this regimg.=1 allows for a very con-

expressing that all fibers whose strengths are belgyy ~ Venient approximation ofR(®) obtained by linearizing
have failed at some time befote This approximation for L(®,2) with respect ta. Then, the integral ovex in Eq. (8)
Q(f,t) with Eq. (3) has been checked by extensive numericalcan e calculated explicitly to yield

simulations in [5] and amounts to viewing the time-

and 0 otherwise, wherdyt) is determined by the self-
consistent equation

- ~ y B
dependent rupture as a “front” propagating and “eating” the ®=R(P) = AmaD(@)U(@)° v, (11
distribution P4(f) from the weakest towards the strongest
fibers. We also have by definition where
+o0 1
O(H)=1- f df Q(f,10). @ U(@) =TLA®,®) = [f(@) - (@) (12)

Taking the time derivative ofb(t) and replacin@(f,t) by and

-Q(f,t)G(f-f,) expressing that the rate of breaking is con- P _ s B
trolled by the thermally activated rupture process acting on D(®) = (AN27Tg)df(®P)/dD = explirf(20 - D} (13)

each fiber independently, we get U(d) in Eq. (12) has a clear physical interpretation as the
o energy barrier between the actual force
¢ = f df Q(f,)G(f - f,). (5) fo (D) =f/[1-D(1)] (14)

and the force frontfy(®) (7) of the distributionQ(f,t) in
Eqg. (2). As the temperature goes to zero, the rupture rate
G(f-f,) goes to zero fof > f, and thusf;— f,, as it should.
y(* 1 p{ 1- f)z} f-f, For a very small temperaturé, adjusts itself dynamically in
=7 | —=—=c¢exp - erfc( — )df. (6) a self-consistent way slightly abo¥gby the influence of the
21, 27Ty 2Ty \a) tiny thermal fluctuations which are just capable of passing
over the effective potential barrigd(d). Equation(11) is
valid as long asJ(®)>T, which implies® < ®,, whered,
1 fs—1 [ is such that the forcé, per surviving fiber reaches the aver-
© = er T, 1|, f=14\2T4irf(20-1), (7)  age strength 1f(d.)=1 yielding®.=1—f,. Such fractions
d ® — &, correspond to the ultimate regime of explosive fail-
wherey=irf(z) is the inverse function to the error function ure. We have checked by direct numerical calculations that
z=erf(y). Puttingfs in Eq. (6) gives Eqg. (11) provides an exceedingly precise approximation of
Eg. (8) as long asu=1 and not too close té, (in practice

Putting Eq.(2) in this equation and taking fd?4(f) a normal
distribution centered on 1 with variandg as in[5,6] yields

Making explicit P4(f) in Eq. (3) gives

1 L
— _Y to within a few percent
P=R(®) = ZL erfdL(®,2)]dz (8) To go further, we need to distinguish between two re-
gimes, ®<®" and ®>®", where ®", solution of
with dR(®)/dd =0, corresponds to the minimum failure rate. For
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u=1,®" is actually independent of the temperatiirand is : 1 1 1o T2 -
i =——exp - ——(@A-f;—V2TIn )
the root of the equation it In ot 2Td( 0=V N (22)
. ) f . . . .
D@)(1-d)P=a, a= -2 (15) Expression22) was obtained numerically in Rd#6] and our

analysis extends this previous work by providing a direct
analytical derivation. This expression shows that the failure
where« is an important physical parameter quantifying therate ® of fibers decreases after application of the load pro-
strength of the disorder relative to the applied force. Theportionally to 14, up to logarithm corrections. This 1l fle-

V2 Ty ’

explicit approximate solution of Eq15) is cay lasts as long ab remains smaller tha®”. This 14 law

is known in seismology as the Omori laj8]. It is also
20-7-4(4-ma o< 3/2 ubiquitous in creep experiments with exponents that are of-
N 24 -2+ 8(4+ma’ ' ten close to or smaller than our prediction 1. For intermediate

O (a) = RN sy (16)  times such thayt<el/?T,
= erfo(\In @) — =2 &> 3/2. _ |
2 l+aVmina P ~ g(LfoN2T In Wy (23)
tin 4t

For example, this give®"(a«=2)=0.089 compared with the
exact value 0.092.
It follows from Eq.(11) that the time to reach somg is

which gives an apparent exponentl/t? with p<1. For
In yt>(1-1,)?/2T, p—1+(T/Ty which is close to but

given by slightly larger than 1. Numerical simulations confirm these
predictions accurately. See, for instance, Fig. 263fwhich

® our theory explains quantitatively. Exact numerical integra-

YTt=4mu f D(2U(2)eY?Tdz. (17)  tion and our analytical approximation coincide everywhere,

0 excluding a time interval corresponding to a very small vi-

cinity of the stationary poin®”. Note that Andrade’s layg]

s - T
For 0<®<®(a), due to the exponential fact@’", the 154" derives from the deformation rate being proportional to

main contribution to the last integral comes from a small

neighborhood of the upper integration limit. This yields df,(t)/dt= focb/[l D)= P (29
D(®)U(D) U(@)T _du(®) as®(t) varies much more slowly thad.
A=dmu AD) © A(®) = do (18) Let us now turn to the description of the second regime

®(t)>d", relevant to obtain the failure rate up to global
for ® <®". This approximation is correct under the assump-failure. Combining Eqs(11) and(19), we obtain the expres-
tion thateV®'T is rapidly increasing withb, i.e., if JA(®)]  sion
>T. The absolute value--| stresses that this condition ap- *
plies also fOI’CI)>CI>*(a)*.3 T|he same reasoning in this caZe U@O) =TIyt ~0] for @ <& <. (29
gives a similar approximation The regimed” < ®d(t) <d, is strongly influenced by thermal

fluctuations, so that the disorder term can be neglected to

D(P)U(®) |, \ obtain, in view of the just quoted expression fd(t)) and
t.—t) =d4ru————e"' T >, (19 ’
WD =4m= @) © 19 o Eq. (12,
wheret.~t is the time to complete rupture. The condition B, — D(t) = f, V2T In y(t.—t) 26

|A(®)|>T shows that both relation€l8) and (19) do not
work in the vicinity of the minimum rate of fiber failures
given by the solution of Eq(15), for which A(®*)=0. For
0<®<®d", combining Eqgs(11) and(18), we obtain

1-\2TIn yft.- 1)

Differentiating both sides of this expression with respedt to
yields the failure rate

. D(t) = C(1)/(t. - 1), (27)
U=Tit fort<t’, 20 . .
20 where C(t)=foT/[c(1-¢)?] with c=2T In[y(t.—t)]. This
wheret” is defined byd(t")=®". This gives second important result was also obtained as (B4l) in
Ref. [5] by a different method. Expressid27) shows that,
U@1)=Tlnyt forl<t<t. (21 for ®>®", the failure rate accelerates towards the finite-

time singularity (27). The underlying physics of thermally
The first inequality simply means that the thermal fluctua-activated failures of heterogeneous elements provides a
tions have had time to contribute several independent joltsaovel mechanism for the ubiquitous time-to-failure regime
The constant of integration gives theyrcontribution deter-  observed in heterogeneous matefig]. Strong quenched
mined from matching with the initial stage. Replacing theheterogeneity has been shown to play an essential role in
left-hand side of Eq(12) by U[®(t)]=TIn 4t and putting  controlling the critical nature of the rupture proc¢g$ and
fa=fo (for ® small gives, in view of Eq.(11), the fraction in the existence of a time-to-failure power law such as Eq.
rate (27). Here, we confirm that the heterogeneity is essential to
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renormalize the thermal fluctuatiofts,6]. While the philoso-
phy is similar, the mechanism is different. As for the Omori
law, the logarithmic corrections in E¢27) may give an ap-

parent exponent of the power law, slightly smaller than 1, as
observed in experiments. Our numerical tests show that ex-

pression(27) provides an approximation which coincides al-
most everywhere with the exact solution inside the interval
t"<t<t.

There is a simple physical interpretation of the transition
between the two aforementioned rate behavi@®) and
(27). To explain the firstrate decayingregime, consider the
degenerate case of spontaneous fractiigg0,d"=1) for
which U(CD):f§/2. As time increased grows, the remain-

ing fibers are stronger and the failure rate decays together

PHYSICAL REVIEW Er1, 016608(2005
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FIG. 1. Effective dimensionless barrier enetggd”) as a func-
tion of the dimensionless disorder strengdt for ®*=1/2, corre-
sponding toT,=(8/m)f2=0.025 forf,=0.1.
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with the rate of change of the energy barrier. The second

regime can be qualitatively understood by taking the limit of
zero disorder(Ty=0,®"=0), leading toU(®d)=(1-f,)?/2.
The forcef, per remaining fiber grows with time, the fibers
break more and more easily and the failure rate grows to giv
the fracture in finite time. In the intermediate case ®
<&, due to the competition between the growthfgfand
f. the two regimes coexist. At early times, the growthf of
dominates giving the Omori and Andrade laws, followed by
the growth off, in the second regime& >®" giving the
power law finite-time singularity.

Last, we turn to the behavior fab ~®", which turns out
to provide the dominant contribution for the total time for
rupture, as shown if5,6]. Indeed, the fiber bundle spends
most of its time in the vicinity of the stationary poidt’,
corresponding to the minimum failure rate. In this cade,
can be expanded as

U(®@) =U(®") = B(®")(P - )?, (28)
with B(®)=-2[d?U(®)/dd?], and Eq.(11) becomes
P = R((If)exp{— @(@ - QD*)Z] . (29)
The solution of this equation is
erfi( @(CD—CD*)) =2 B(W;?R((IJ*)(t—t*), (30

where erfiz)=(1/i)erf(iz) is the imaginary error function.
Using its asymptotics el(fi)~(1/\«“‘7-rz)eZZ for large z to-
gether with Eq(30), Eq. (29) becomes

-
dVdt= ———, Wwith¥=b-P", 31
B(d')(t-t) (3D
whose solution yields the fracture rate
o = * NN RGN
@ = \Tsgnt-t)/2/t—t [\B(®")In(y|t-t']), (32

for 9|t—t"|> 1. Expressior{29) allows us additionally to cal-
culate the total lifetime of the fiber bundle:

e =[1/R(P)] f ’ exp{— [B(®)/T)(® - d")2dd. (33)

The calculation of this integral with the use of Ed1) gives
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This expression, together with E¢L6), recovers the main
result of[5,6], while improving on the prefactors to the main
Arrhenius-type dependence.
e Using Egs.(12) and(15), U(®") can be written explicitly
U@ = {‘b"_q)* + \/m(Lﬂz (35)
li-o (1-@%/]"

* =

where the sign+ (—) corresponds to the case”>1/2
(®"<1/2). As shown in Fig. 1,U(®") is a nonmonotone
function of Ty. Due to the aforementioned competition be-
tween quenched disorder and the growth of the actual force
f,, U(®") decreases as long a'§<T:, and then increases
with increasingTy beyondTy. The first regimeTy< T cor-
responds to the effect discovered in Rdfs5,6] and men-
tioned above of the renormalization of thermal fluctuations
by quenched disorder, and consequently of decreasing
strength by increasing the disorder. Since a largéd”)
corresponds to a large lifetime through E84), we uncover

the effect of a strengthening of the fiber system by increasing
the disorder beyond a certain threshold. All our formulas
have been checked by direct numerical integration with ex-
cellent agreements. We expect that extensions of the DFBM
to nonmean field power law interactiof0] will not change

our results qualitatively but may modify the Omori’'s and
time-to-failure exponents.

In conclusion, we have revisited the coarse-grained ther-
mally activated DFBM model introduced in Ref$.,6]. This
model captures the collective nature of many small-scale
thermally-activated processédislocation motion, cavities,
microcrack$ via the cascade of thermally-activated load
transfers reorganizing the stress field described above.
Complementing previous analygés6], we have presented a
synthetic analytical derivation of the Andrade law of the pri-
mary creep regime, which is due to the thermally activated
stress transfer on the most susceptible elememskest fi-
berg. We have also recovered previous analytical results of
the tertiary power law regime, which is due to the coopera-
tive cascade involving a finite fraction of the whole system.
In addition, we predict a reentrant dependence of the lifetime
as a function of the amount of quenched disorder.

We acknowledge useful exchanges with S. Ciliberto and
A. Politi.
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