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Using a simple mean-field rupture model with quenched disorder in the presence of thermal fluctuations
introduced by S. Cilibertoet al., we provide an analytical theory of three ubiquitous empirical observations
obtained in creepsconstant applied stressd experiments: the initial Andrade-like and Omori-like 1/t decay of
the rate of deformation and of fiber ruptures and the 1/stc− td critical time-to-failure behavior of acoustic
emissions just prior to the macroscopic rupture. The lifetime of the material is controlled by a thermally
activated Arrhenius nucleation process, describing the crossover between these two regimes, as shown by S.
Ciliberto et al. Thus tiny thermal fluctuations may actually play an essential role in macroscopic deformation
and rupture processes at room temperature. We also discover a reentrant dependence of the lifetime as a
function of the amount of quenched disorder.
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Rupture in random media can be viewed as a kind of
critical phenomenonf1,2g, with proposed applications, in
particular, to fiber composites and earthquakes. This field has
attracted the attention of physicists due to the existence of
power laws and fractals or multifractality expressing the self-
organization of the rupture process. Constant stresssso-
called “creep”d experiments constitute a standard testing pro-
cedure in material sciences which exhibits a wealth of such
“critical” behaviors. The typical response to the sudden ap-
plication of a constant stress is that the strain rate first jumps
rapidly to high values followed by slow universal power law
decays, called the Andrade lawf3g, characterizing the “pri-
mary creep regime.” Then, after this long decay followed by
an approximately constant plateaussecondary regimed whose
durations may vary within extraordinary large boundsssee
belowd, the strain rate rebounds and acceleratesswhile the
applied stress remains constantd by following a power law
acceleration resulting in a finite-time singularitysthe rupture
of the sampled: this is the tertiary creep regime. These re-
gimes of decelerating followed by accelerating rates and the
lifetime of the structure are the result of a subtle interplay
between the preexisting microheterogeneity of the material
and the self-organized evolving deformation and damage due
to dislocation motion and/or microcracking. Previous pio-
neering models have suggested that primary and tertiary
creeps are not independentf4g.

Here, we propose a simple mechanism that provides an
explanation of all these observations in a unified way. It is
based on the recent proposalf5,6g that thermal noise is
strongly amplified by quenched heterogeneities. Based on
the analysis of a simple fiber bundle rupture model, Refs.
f5,6g showed that the average lifetime of the fiber bundle
takes an Arrhenius form with an effective temperature renor-
malized from the bare temperatureT to a value strongly am-

plified by the presence of the frozen disorder in the rupture
thresholdsfcsid, in agreement with experiments and numeri-
cal simulations. This result suggests that the usual assump-
tion of neglecting the role of thermal fluctuations in material
rupture processes at room temperature may actually be incor-
rect sseef7g for early discussionsd: due to frozen heteroge-
neities, tiny thermal fluctuations can be amplified many
times, thus actually controlling the time-dependent aspects of
failure.

Since rupture involves a large range of scales, we follow
the modeling strategy of critical phenomenasas well as ma-
terial sciencesd and use a coarse-grained model describing
the mechanism of creep, damage and precursory rupture by
averaging over the microscopic degrees of freedom to retain
only two ingredients:sid stress load transfer andsii d thermal
activation of the rupture of a coarse-grained element. The
corresponding democratic fiber-bundle modelsDFBMd with
thermal noisef5,6g can be seen as a mean field treatment of
rupture. A macroscopic constant loadF=Nf0 is applied at
time t=0 to an initially undamaged system made of a very
large numberN of parallel elastic fiberssthe results derived
below are obtained in the thermodynamic limitN→`d. At
all times, F is shared democratically among allf1−FstdgN
surviving fibers, whereFstd is the fraction of broken fibers at
time t. The externally applied force per surviving fiber is thus
fa= f0/ f1−Fstdg. The strength of each fiberi is characterized
by a critical valuefcsid drawn for a distributionPdsfd, cen-
tered on the mean equal to 1 and with varianceTd. Putting
the mean strength to 1 sets the force scale. The heteroge-
neous strengths are given characteristic of the fibers and cor-
respond to a quenched disorder, which is “read” in a certain
organized way as the rupture develops. Microscopic thermal
fluctuations are taken into account by assuming that a fiber
with load fa and thresholdfcsid. fa has a nonzero probabil-
ity G(fcsid− fa) to rupture per unit time governed by the rate
with which a thermal fluctuation can activate a microscopic
force Df i ù fcsid− fa to pass the rupture thresholdfcsid:*Electronic address: sornette@moho.ess.ucla.edu
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G„fcsid − fa… =
g

2
erfcS fcsid − fa

Î2T
D , s1d

where erfcsxd is the complementary error function,T is the
variance of the thermal force fluctuationsDf i, and g is a
microscopic constant rate fixing the time scale of the thermal
activation process. This expression amounts to introducing a
zero-mean normal distribution of thermal fluctuation forces
Df i with varianceT and with correlation time proportional to
1/g.

We first follow f6g and introduce the distributionQsf ,td of
the rupture thresholds of the unbroken fibers at timet. Ob-
viously,Qsf ,td=0 for f , fa, since all these fibers are already
broken.Qsf ,td can be approximated with a very high accu-
racy in the limit N→` by the initial distributionPdsfd of
rupture strengths truncated at a lower valuefsstd,

Qsf,td = Pdsfd for f . fsstd s2d

and 0 otherwise, wherefsstd is determined by the self-
consistent equation

Fstd =E
−`

fsstd

df Pdsfd s3d

expressing that all fibers whose strengths are belowfsstd
have failed at some time beforet. This approximation for
Qsf ,td with Eq. s3d has been checked by extensive numerical
simulations in f5g and amounts to viewing the time-
dependent rupture as a “front” propagating and “eating” the
distribution Pdsfd from the weakest towards the strongest
fibers. We also have by definition

Fstd = 1 −E
−`

+`

df Qsf,td. s4d

Taking the time derivative ofFstd and replacingQ̇sf ,td by
−Qsf ,tdGsf − fad expressing that the rate of breaking is con-
trolled by the thermally activated rupture process acting on
each fiber independently, we get

Ḟ =E
−`

+`

df Qsf,tdGsf − fad. s5d

Putting Eq.s2d in this equation and taking forPdsfd a normal
distribution centered on 1 with varianceTd as inf5,6g yields

Ḟ =
g

2
E

fs

` 1
Î2pTd

expF−
s1 − fd2

2Td
GerfcS f − fa

Î2T
Ddf . s6d

Making explicit Pdsfd in Eq. s3d gives

F =
1

2FerfS fs − 1
Î2Td

D + 1G, fs = 1 +Î2Td irf s2F − 1d, s7d

wherey=irfszd is the inverse function to the error function
z=erfsyd. Putting fs in Eq. s6d gives

Ḟ = RsFd ;
g

2
E

F

1

erfcfLsF,zdgdz, s8d

with

LsF,zd = s1/Î2TdS1 −
f0

1 − F
D + m irf s2z− 1d s9d

and

m = ÎTd/T. s10d

This equation is valid as long as the approximations2d holds
ssee belowd. The solution of Eq.s8d provides in principle all
the information on the fractionFstd of broken fibers.

The parameterm quantifies the relative importance of the
thermal fluctuations compared with the quenched heteroge-
neities. The relevant regime for applications to macroscopic
ruptures at room temperature ism.1 and oftenm@1, that
is, thermal fluctuations are tiny contributions to the applied
macroscopic mechanical forces. Indeed, assuming that the
energy barrier to rupture a fiber corresponds to the Griffith
energy<gc2 necessary for nucleating a crack of half-length
c in the solid with surface energyg, we obtainm<1.5–4
3103 for c=1 micron andm<1.5–4 for c=1 nanometer,
usingg=10–50 erg/cm2 for most solids. Thus, even for the
smallest microcracks, thermal fluctuations are very small in
relative value.

It turns out that this regimem*1 allows for a very con-
venient approximation ofRsFd obtained by linearizing
LsF ,zd with respect toz. Then, the integral overz in Eq. s8d
can be calculated explicitly to yield

Ḟ = RsFd =
gT

4pmDsFdUsFd
e−UsFd/T, s11d

where

UsFd = TL2sF,Fd =
1

2
ffssFd − fasFdg2 s12d

and

DsFd = s1/Î2pTdddfssFd/dF = exphirf 2s2F − 1dj. s13d

UsFd in Eq. s12d has a clear physical interpretation as the
energy barrier between the actual force

fasFd = f0/f1 − Fstdg s14d

and the force frontfssFd s7d of the distributionQsf ,td in
Eq. s2d. As the temperature goes to zero, the rupture rate
Gsf − fad goes to zero forf . fa and thusfs→ fa, as it should.
For a very small temperature,fs adjusts itself dynamically in
a self-consistent way slightly abovefa by the influence of the
tiny thermal fluctuations which are just capable of passing
over the effective potential barrierUsFd. Equations11d is
valid as long asUsFd@T, which impliesF,Fc, whereFc

is such that the forcefa per surviving fiber reaches the aver-
age strength 1:fasFcd=1 yielding Fc=1−f0. Such fractions
F→Fc correspond to the ultimate regime of explosive fail-
ure. We have checked by direct numerical calculations that
Eq. s11d provides an exceedingly precise approximation of
Eq. s8d as long asm*1 and not too close toFc sin practice
to within a few percentd.

To go further, we need to distinguish between two re-
gimes, F,F* and F.F* , where F* , solution of
dRsFd /dF=0, corresponds to the minimum failure rate. For
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m*1, F* is actually independent of the temperatureT and is
the root of the equation

DsF*ds1 − F*d2 = a, a =
f0

Î2pTd

, s15d

wherea is an important physical parameter quantifying the
strength of the disorder relative to the applied force. The
explicit approximate solution of Eq.s15d is

F*sad =5
20 −p − 4s4 − pda
24 − 2p + 8s4 + pda

, a , 3/2,

1

2
erfcsÎln ad

aÎp ln a

1 + aÎp ln a
, a . 3/2.6 s16d

For example, this givesF*sa=2d=0.089 compared with the
exact value 0.092.

It follows from Eq. s11d that the time to reach someF is
given by

gTt = 4pmE
0

F

DszdUszdeUszd/Tdz. s17d

For 0,F,F*sad, due to the exponential factoreU/T, the
main contribution to the last integral comes from a small
neighborhood of the upper integration limit. This yields

gt . 4pm
DsFdUsFd

AsFd
eUsFd/T, AsFd =

dUsFd
dF

, s18d

for F,F* . This approximation is correct under the assump-
tion that eUsFd/T is rapidly increasing withF, i.e., if uAsFdu
@T. The absolute valueu¯u stresses that this condition ap-
plies also forF.F*sad. The same reasoning in this case
gives a similar approximation

gstc − td . 4pm
DsFdUsFd

uAsFdu
eUsFd/T, F . F* , s19d

where tc− t is the time to complete rupture. The condition
uAsFdu@T shows that both relationss18d and s19d do not
work in the vicinity of the minimum rate of fiber failures
given by the solution of Eq.s15d, for which AsF*d=0. For
0,F,F* , combining Eqs.s11d and s18d, we obtain

U̇ = T/t for t , t* , s20d

wheret* is defined byFst*d=F* . This gives

U„Fstd… = T ln gt for 1 ! t , t* . s21d

The first inequality simply means that the thermal fluctua-
tions have had time to contribute several independent jolts.
The constant of integration gives the lng contribution deter-
mined from matching with the initial stage. Replacing the
left-hand side of Eq.s12d by UfFstdg=T ln gt and putting
fa. f0 sfor F smalld gives, in view of Eq.s11d, the fraction
rate

Ḟ .
1

4pmt ln gt
expF−

1

2Td
s1 − f0 − Î2T ln gtd2G . s22d

Expressions22d was obtained numerically in Ref.f6g and our
analysis extends this previous work by providing a direct
analytical derivation. This expression shows that the failure

rate Ḟ of fibers decreases after application of the load pro-
portionally to 1/t, up to logarithm corrections. This 1/t de-
cay lasts as long asF remains smaller thanF* . This 1/t law
is known in seismology as the Omori lawf8g. It is also
ubiquitous in creep experiments with exponents that are of-
ten close to or smaller than our prediction 1. For intermediate
times such thatgt,e1/2T,

Ḟ ,
1

t ln gt
es1−f0dÎ2T ln gt/Td, s23d

which gives an apparent exponent,1/tp with p,1. For
ln gt@ s1− f0d2/2T, p→1+sT/Tdd which is close to but
slightly larger than 1. Numerical simulations confirm these
predictions accurately. See, for instance, Fig. 2 off6g which
our theory explains quantitatively. Exact numerical integra-
tion and our analytical approximation coincide everywhere,
excluding a time interval corresponding to a very small vi-
cinity of the stationary pointF* . Note that Andrade’s lawf3g
also derives from the deformation rate being proportional to

dfastd/dt = f0Ḟ/f1 − Fstdg2 ~ Ḟ s24d

asFstd varies much more slowly thanḞ.
Let us now turn to the description of the second regime

Fstd.F* , relevant to obtain the failure rate up to global
failure. Combining Eqs.s11d ands19d, we obtain the expres-
sion

U„Fstd… = T lnfgstc − tdg for F* , F , Fc. s25d

The regimeF* ,Fstd,Fc is strongly influenced by thermal
fluctuations, so that the disorder term can be neglected to
obtain, in view of the just quoted expression forU(Fstd) and
of Eq. s12d,

Fc − Fstd = f0

Î2T ln gstc − td

1 −Î2T ln gstc − td
. s26d

Differentiating both sides of this expression with respect tot
yields the failure rate

Ḟstd = Cstd/stc − td, s27d

where Cstd= f0T/ fcs1−cd2g with c=Î2T lnfgstc− tdg. This
second important result was also obtained as Eq.sB11d in
Ref. f5g by a different method. Expressions27d shows that,
for F.F* , the failure rate accelerates towards the finite-
time singularity s27d. The underlying physics of thermally
activated failures of heterogeneous elements provides a
novel mechanism for the ubiquitous time-to-failure regime
observed in heterogeneous materialf9g. Strong quenched
heterogeneity has been shown to play an essential role in
controlling the critical nature of the rupture processf2g and
in the existence of a time-to-failure power law such as Eq.
s27d. Here, we confirm that the heterogeneity is essential to

ANDRADE, OMORI, AND TIME-TO-FAILURE LAWS … PHYSICAL REVIEW E 71, 016608s2005d

016608-3



renormalize the thermal fluctuationsf5,6g. While the philoso-
phy is similar, the mechanism is different. As for the Omori
law, the logarithmic corrections in Eq.s27d may give an ap-
parent exponent of the power law, slightly smaller than 1, as
observed in experiments. Our numerical tests show that ex-
pressions27d provides an approximation which coincides al-
most everywhere with the exact solution inside the interval
t* , t, tc.

There is a simple physical interpretation of the transition
between the two aforementioned rate behaviorss22d and
s27d. To explain the firstsrate decayingd regime, consider the
degenerate case of spontaneous fracturesf0=0,F* =1d for
which UsFd= fs

2/2. As time increases,fs grows, the remain-
ing fibers are stronger and the failure rate decays together
with the rate of change of the energy barrier. The second
regime can be qualitatively understood by taking the limit of
zero disordersTd=0,F* =0d, leading toUsFd=s1− fad2/2.
The forcefa per remaining fiber grows with time, the fibers
break more and more easily and the failure rate grows to give
the fracture in finite time. In the intermediate case 0,F*

,Fc, due to the competition between the growth offs and
fa, the two regimes coexist. At early times, the growth offs
dominates giving the Omori and Andrade laws, followed by
the growth of fa in the second regimeF.F* giving the
power law finite-time singularity.

Last, we turn to the behavior forF<F* , which turns out
to provide the dominant contribution for the total time for
rupture, as shown inf5,6g. Indeed, the fiber bundle spends
most of its time in the vicinity of the stationary pointF* ,
corresponding to the minimum failure rate. In this case,U
can be expanded as

UsFd = UsF*d − BsF*dsF − F*d2, s28d

with BsFd=−1
2fd2UsFd /dF2g, and Eq.s11d becomes

Ḟ . RsF*dexpF−
BsF*d

T
sF − F*d2G . s29d

The solution of this equation is

erfiSÎBsF*d
T

sF − F*dD = 2ÎBsF*d
pT

RsF*dst − t*d, s30d

where erfiszd=s1/iderfsizd is the imaginary error function.

Using its asymptotics erfiszd,s1/Îpzdez2
for large z to-

gether with Eq.s30d, Eq. s29d becomes

dC2/dt .
T

BsF*dst − t*d
, with C = F − F* , s31d

whose solution yields the fracture rate

Ḟ . ÎT sgnst − t*d/2ut − t* uÎBsF*dlnsgut − t* ud, s32d

for gut− t* u@1. Expressions29d allows us additionally to cal-
culate the total lifetimetc of the fiber bundle:

gtc = f1/RsF*dgE
−`

`

exph− fBsF*d/TgsF − F*d2jdF. s33d

The calculation of this integral with the use of Eq.s11d gives

gtc . 4pÎp
DsF*dUsF*d

ÎBsF*d

ÎTd

T
expF−

UsF*d
T

G . s34d

This expression, together with Eq.s16d, recovers the main
result off5,6g, while improving on the prefactors to the main
Arrhenius-type dependence.

Using Eqs.s12d ands15d, UsF*d can be written explicitly

UsF*d = FFc − F*

1 − F* ±ÎlnS a

s1 − F*d2DG2

, s35d

where the sign1 s2d corresponds to the caseF* .1/2
sF* ,1/2d. As shown in Fig. 1,UsF*d is a nonmonotone
function of Td. Due to the aforementioned competition be-
tween quenched disorder and the growth of the actual force
fa, UsF*d decreases as long asTd,Td

* and then increases
with increasingTd beyondTd

* . The first regimeTd,Td
* cor-

responds to the effect discovered in Refs.f5,6g and men-
tioned above of the renormalization of thermal fluctuations
by quenched disorder, and consequently of decreasing
strength by increasing the disorder. Since a largerUsF*d
corresponds to a large lifetime through Eq.s34d, we uncover
the effect of a strengthening of the fiber system by increasing
the disorder beyond a certain threshold. All our formulas
have been checked by direct numerical integration with ex-
cellent agreements. We expect that extensions of the DFBM
to nonmean field power law interactionsf10g will not change
our results qualitatively but may modify the Omori’s and
time-to-failure exponents.

In conclusion, we have revisited the coarse-grained ther-
mally activated DFBM model introduced in Refs.f5,6g. This
model captures the collective nature of many small-scale
thermally-activated processessdislocation motion, cavities,
microcracksd via the cascade of thermally-activated load
transfers reorganizing the stress field described above.
Complementing previous analysesf5,6g, we have presented a
synthetic analytical derivation of the Andrade law of the pri-
mary creep regime, which is due to the thermally activated
stress transfer on the most susceptible elementssweakest fi-
bersd. We have also recovered previous analytical results of
the tertiary power law regime, which is due to the coopera-
tive cascade involving a finite fraction of the whole system.
In addition, we predict a reentrant dependence of the lifetime
as a function of the amount of quenched disorder.

We acknowledge useful exchanges with S. Ciliberto and
A. Politi.

FIG. 1. Effective dimensionless barrier energyUsF*d as a func-
tion of the dimensionless disorder strengthTd, for F* =1/2, corre-
sponding toTd

* =s8/pdf0
2.0.025 for f0=0.1.
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